天才一秒记住【爱看小说】地址:https://www.akxss.com
Chapter2Navigatingthroughspacetime
banner"
>
&icsistheexquisitelyperfeguageneededfhowthetheoryofrelativityappliestothephysiiverseandallofspadthatdesirahatoearblaathematicaldes,whilepowerfula,evensoethingnandflahosewithouttheappropriateteiiivewords,howevereloquent,lacktherigourandpowerofamathematicalequationandbeimpredlimiting.Picturesh(itissaid)worthathousandwords,otonlyausefulisebutaveryhelpfulwaytovisualizewhatisgoingon.Forthisreason,itiswellworthspendingalittleefforttouandaparticulartypeofpicture,calledaspacetimediagraThiswillhelpiaureofspacetimearoundblackholes.
&imediagrams
&ooninFigure3sholespacetimediagraFollowingtraditioime-like'axisistheoisvertithepageandthespace-like'axisisdrawnperpendiculartothis.Ofcourse,wereallyneedfouraxestodescribespacetimebecausetherearethreespace-likeaxes(usuallydenotedx,y,andz)aime-likeaxis.Hoillsufficeforourpurpose(andofutuallyperpendicularaxesareimpossibletodraw!).Wherethesetwoaxesiiscalledthein,andthismayberegardedasthepointofhereandnow'fortheobserverwhohasstructedtheirspacetimediagraAaheerashutter,occursatapartieaparticularlospace.Sustaisrepresentedbyadotoimediagram,appropriatetothetimeandspatialloquestiowodotsinFigure3,atiallyseparated(theydonotoccuratthesamepointonthespaceaxis)buttheyaresimultaheidenticalateoimeaxis).Youagisdtothesimultaerpressesoftwophotographerswhoarestaafromothesamespectacle.Ifpoievents,whatdolinesiimediagramrepresent?Alinesimplyshoathofahroughspacetime.Asweliveourlives,wejhspadthepathweleavebehindus(somewhatasaseningtrailofslimebehindit)isalineiime,ahisiscalledaworldline.Ifyoustayathomeallday,yourworldliicalpaththroughspacetime(withspaate=22Aue',forexample).Youmoveforwardiarefixediheotherhandyoumadealongjourney,yourworldlisoverbecauseyourdistaime,beoveinspaceaswellastime.
3.Asimplespacetimediagra
Forexample,lookattheworldlineshownihelinewhichispartvertifurtherupbeesslanting.Thisdstotheworldliherentity,whichisstationaryforthetimeihevertitoftheline.Abeacamerabelongihephotographers,leftonachair(sothatitsworldliicalbecauseitspositionisn'tg),beforeitwasstolenandheiallogesuously).Wherethisliisspatialloisgwithtime.Theslopeofthisliellsyouabouttherateofgeofdistaime,whiohespeed.Inthiscasethisisthespeedatwhichthethiefiswhiskingawaythestolehefasterthethiefismakingoffwiththeotherwordsthemroundheisgihelessvertidthemoreslantingthispartofthelihereisofcoursearobustupperlimittothespeedatwhichthethiefoffwithhisillegallygottengainsandthis,asdisChapter1,isthespeedoflight.Thetrajeoflightwouldberepresentedbyamaximallyslantingline(oediimediagramsasbeiothetimeaxisbyusieduhinggofasterthanthatspeed,noworldliagreateraimeaxisthanthis.
Worldlinesoimediagramhavingthismaximallyslantingangle,dingtothismaximalspeed,thespeedoflight,giverisetoanimportacalledalighte.Theideaofthisisverysimple:youlyhaveaheUhefuturebysomepriordthatcausalsequepropagatefasterthanthespeedoflight.Thereforeyoursphereofinfluencehtnowisediedrangeofspaamelythatpartwhichiswithina45-degreeahepositivetimeaxisasshowninFigure4.Moreover,youlyhavebeeninfluencedbyacausalofeventsthatatedfasterthanthespeedoflight.Thereforeohina45-degreeahebackwardstimeaxisfluenodraacetimediagramwithtwospace-likeaxesaime-likeaxis,therianglesinFigure4beedthesearewhatwemeanbylightes,asshownihelightFigure5deliesregionsofspawhiobserver(deemedtobelocatedatthein,theirhereandnow')principlereach(orhavereathepast)withouthavingtoiheicspeedlimitandtravellihespeedoflight.Theregiohepositive(future)timeaxisisknowurelightewhilethetredoimeaxis(i.e.pasttimes)isknoastlighte.
4.Asimplelight.
ThustheassassinationofJulius44BCispartofyourpast,becausethereisaceivablekbetweeandyou.(Ifyouhadtolearnaboutitatschool,thatdemoheexistenceofak!)BecauselightfromtheAndromedaGalaxyreachatelesEarth,ittooispartofyourpast.Hhttakes6milliettous,soitisthe
5.Aspacetimediagramshowieofaparticularobserver.
AndromedaGalaxyof6milliothatispartofyourpastandsitshte.TheAndromedaGalaxyoftoday,oreventheAndromedaGalaxyof44BC,isoutsideyhttshappeningohernoworevenba44Botinfluenceyhtnowbeykwouldhavehadtotravelfasterthanthespeedoflight.
&hreespacetimediagramsthatwehaveseeninthischaptersofarhavetheiraxeslabelledastimea,professionalswouldn'tnormallyincludeaxislabelsoreventheaxesiimediagrams.Thisisn'tsimplythatitissoroutiimegoesupandspacegoesacrossthatprofessionalastrophysicistsgetsloppy(thoughthat'snotanunknowitisbecausetheexactpositionsiimeotbeagreeduponbyallobservers.Intheworldofspecialrelativity,thenotionofsimultaybreaksdowwoeveobesimultaneousforoneobserverdoesn'tatallmeanthattheyaresimultaneousforotherobservers.
Thusthetwophotographerspressiersoftheircameras‘simultaneously'willaravellingiveryfastrelativetothecamerassees.Thatobserverwilldedueraclicksubstaheother.ThetwopointsinFigure3whichIdrewatthesameverticalheight(sinceIclaimedtheeventsoccurredatthesametime)earatdiffereicalpositioimediagramoftherapidlytravelliein'srelativityinsistsherdiagramisjustasvalidasmihepointsoimediagramdependonanobserver'spoiheirframeofrefere'sthereasthem?
Touhis,itishelpfultofotheworldlineofamovingpartidsodraacetimediagraminarticlemhspacetime,takingitslightewithit(thistriwithinthee).iheparticle'spath(i.e.itsworldline)alwaysstayswithieasitottravelfasterthanthespeedoflight.
&ein'sSpecialTheoryofRelativity,whichisasubsetofhisGeaiedsetofphysicalsituatioceptualframeworkbeyondSpecialRelativityishetextofspacetimewhichisexpanding,thepre-emiexampleofwhichistheexpandihistext,themaionofcausalityissuovefasterthanthespeedoflightwithrespecttoyourlocalbitofspace.
Howdoobjeo?
Althoughphotonshavenomass,itturnsoutthattheyarestillinfluencedbygravity.Itisbestnottothinkofthisasduetoaforce,butratherthatthisesaboutbecauseofthecurvatureofspacetime.Aphotonisusuallythoughttotravelinastraightline,egetthenotionofalightray'.Hhacurvedspacetimeitwillfolloathknownasageodesic.
6.Aspacetimediagramofapartigalongitsworldliisalwaysedwithinitsfuturelighte.
&sEarth-basedotations,ageodesiegeodesy,i.e.measurihelandofourpla'ssurfaimportadesgthenatureofspacetimethroughouttheUniverse.Ifspaotcurved(meairelytwitheverydaygeometrythatwemayhavelearsEueofhissuccessors),thenageodesicwouldbethestraightlih'thatalightraywouldtravel.Buttheshortestdistawopoints,whichistheroutethatalightraywants'totake,isknowermnullgeodesic'.Iheshortestdistawopointsisn'twhatwethinkht,butgehtlinesincurvedspaces'.Astraightlinealsobecharacterizedasthepathyoufollowbykeepingmovingiion.Anexampleofhowgeometryisseriouslydifferentonacurvedsurfaglinesoflongitudeowoadjaesoflongitude(aralleltooheequator)willmeetatapointatthepole,asshowninFigure7.However,inflatspaceparallellineswillmeetonlyatinfinity(asperEuclid'slastaxiom).
Actually,wherespacetimeisplebecauseofthepresenass,thatcurvatureismahepaththatalightrayor(amentaldeviceusedbyphysicists)atestparticle'freelyabletomovewithnoinfluenyexternalforovealowoevesshardedastwopointsin4-Dspacetime,eaotedi,x,y,z).
7.Linesoflongitudeonasphereareparallelattheequator,aapointatthepoles.
Arulecalledametrictellsushowdrulersmeasuretheseparatiosiimeahebasisfoutproblemsiry.AverysimpleexampleofametricisPythagoras'theorem,whichtellsushowtoputethedistawopointsthatlieihesolutioein'sfieldequationstellushowtocalculatethemetricofspacetimewheributionofmatteriskhisteodesicsfortherealUniverse.Forexample,opiecesofobservationalevideneralRelativitywasthebendinghtbytheSun,measuredduringasolareclipse(agoodtimetoexamipositionsofstarsclosetotheSun'sdiscbecauselightfromthediscisblockedoutbytheMoon,anopportunityseizeduponbySirArthurEddingtonin1919).TheSun'smasscurvesspacetime.Thustheshortestpath(thegeodesiadistantstartoatelesEarthisraightliisbentroundbytheSun'sgravitationalfield,asshowninFigure8.
Thebendinghtdemospaceiscurved,butEinstein'sGeellsusitisactuallyspacetimethatiscurved.Therefhtexpectthatmassalsohasseeffee.IheEarth'sgravitationalfieldissuffiakeEarth-boundclockstickabitslowerthantheywoulddoindeepspace,althoughtheeffectissmall(roughlyoinabillion)butmeasurable.Thegravitatioshorizonofablauger.Thus,evecaseofanon-spinningblaerulyclosetotheblaparedtohowitrunsatahugedistaheblackhole.Thisisarealeffeddoesnotdependoimeismeasured(forexamplebyanatomicclitalwatch).Itfollowsdirethecurvatureofspaducedbythemasswhichtipsthelightestowardsthemass.Figure9ihege.
8.AmasssuchastheSuion,orcurvature,iime.
Blackholesprofouheorientatioes.Asaparticleapproachesablackhole,itsfuturelightetiltsmoreaowardstheblackhole,sothattheblaesmoreaofitsiure.Wheiclecrossestheeventhorizon,allofitspossiblefuturetrajediheblackhole.Justwithihorizoetiltingissogreatthatonesidebeesparallelwiththeeventhorizoureliesehihorizoheblackholeisnotpossible.Figure9alsoillustratesthispoint:itisessentiallyarepresentationoflocalspacetimediagrams',becausetheassemblyoflightesallowsyoutouheloditionsexperieestparticlelocatedatdifferentpositions.Inthisfigure,timeihepageandsothisdiagramalsogivesasenseofhowablasandgrowsduetoinfallingmatter.
9.Diagramofthespacetimesurroundingablackholeshowiurelightesforobjetheeventhorizoheeventhorizon.
JustasforthedarkstarsofMidLaplacedisChapter1whichcouldhavesustaiemsinorbitaroundthemmuchlikeourSolarSystem,soitisthatweonlyknowthatablackholeissgravitationalpull.Thismightleadyoutothinkthattheocharacterizesablackholeisitsmass.Iherornotablackhhasadramaticeffeitsproperties,andIwillexplainhowthisesaboutinChapter3.
本章未完,请点击下一章继续阅读!若浏览器显示没有新章节了,请尝试点击右上角↗️或右下角↘️的菜单,退出阅读模式即可,谢谢!